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Abstract The regression diagnostics algorithm REGDIA in S-Plus is introduced
to examine the accuracy of pKa predicted with four programs: PALLAS, MARVIN,
PERRIN and SYBYL. On basis of a statistical analysis of residuals, outlier diagnostics
are proposed. Residual analysis of the ADSTAT program is based on examining good-
ness-of-fit via graphical diagnostics of 15 exploratory data analysis plots, such as bar
plots, box-and-whisker plots, dot plots, midsum plots, symmetry plots, kurtosis plots,
differential quantile plots, quantile-box plots, frequency polygons, histograms, quan-
tile plots, quantile-quantile plots, rankit plots, scatter plots, and autocorrelation plots.
Outliers in pKa relate to molecules which are poorly characterized by the considered
pKa program. Of the seven most efficient diagnostic plots (the Williams graph, Graph
of predicted residuals, Pregibon graph, Gray L–R graph, Index graph of Atkinson
measure, Index graph of diagonal elements of the hat matrix and Rankit Q–Q graph of
jackknife residuals) the Williams graph was selected to give the most reliable detection
of outliers. The six statistical characteristics, Fexp, R2, R2

P, MEP, AIC, and s in pKa
units, successfully examine the specimen of 25 acids and bases of a Perrin’s data set
classifying four pKa prediction algorithms. The highest values Fexp, R2, R2

P and the
lowest value of MEP and s and the most negative AIC have been found for PERRIN
algorithm of pKa prediction so this algorithm achieves the best predictive power and
the most accurate results. The proposed accuracy test of the REGDIA program can
also be extended to test other predicted values, as log P , log D, aqueous solubility or
some physicochemical properties.
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1 Introduction

The principle of the structure–property relationship is a basic concept in organic chem-
istry, as the properties of molecules are intrinsically determined by their structure. The
macroscopic properties of chemical compounds clearly depend on their microscopic
structural descriptors, and the development of a Quantitative Structure/Property Rela-
tionship QSPR on theoretical descriptors is a powerful tool for the prediction of the
chemical, physical and biological properties of compounds. An enormous number of
structural descriptors have been used by researchers to increase the ability to correlate
various properties. A molecule is transformed into a sequence or a fixed-length vector
of values before it can be used to conduct QSPR studies. Although molecular size may
vary to a large extent, the vector representation must be in a fixed length for all the
molecules in a data set in order to apply a data analysis method. Various approaches
have been developed to represent the structure of molecules for QSPR studies. Since so
many descriptors are available, the development and selection of appropriate descrip-
tors in describing a selected property of molecule has become a Herculean task. An
important role of the degree of ionization in the biological behaviour of chemical sub-
stances, namely drugs, is well established. One of the fundamental properties of an
organic drug molecule, the pKa value, determines the degree of dissociation in solution
[1–12]. To obtain a significant correlation and accurately predicted pKa, it is crucial
that appropriate structural descriptors be employed. In this context, the approach using
a statistical accuracy examination of the predicted pKa is important.

Numerous studies have considered, and various approaches have been used in
the prediction of pKa, but mostly without a rigorous statistical test of pKa accuracy
[13–35].

The goal of this paper is to develop a rigorous accuracy examination tool which is
able to investigate weather a pKa prediction method leads to a sufficiently accurate
estimate of pKa value, as the correlation between predicted pKa,pred and experimental
value pKa,exp is usually very high. In this examination, the linear regression models are
used for interpreting the essential features of a set of pKa,pred data. There are a number
of common difficulties associated with real datasets. The first involves the detection
and elucidation of outlying pKa,pred values in the predicted pKa data. A problem
with pKa,pred outliers is that they can strongly influence the regression model, espe-
cially when using least squares criteria, so several steps are required: firstly to identify
whether there are any pKa,pred values that are atypical of the dataset, then to remove
them, and finally to interpret their deviation from the straight line regression model.

Because every prediction is based on a congeneric parent structure, pKa values
can only be reliably predicted for compounds very similar to those in the training set,
making it difficult or impossible to get good estimates for novel structures. A further
disadvantage is the need to derive a very large number of fragment constants and cor-
relation factors, a process which is complicated and potentially ambiguous. Although
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this is probably the most widely used method, the accuracy and extensibility of the
predictions obtained have not been gratifying.

Authors usually evaluate model quality and outliers on the basis of fitted residues.
A simple criticism criterion like, for example, “more than 80% of pKa in the training
sample are predicted with an accuracy of within one log unit of their measurement,
and 95% are within two log units of the accuracy,” is often used, or “when the dif-
ference between the measured pKa,exp and predicted pKa,pred values is larger than 3
log units, it is used to denote a discrepancy”. However, rigorous statistical detection,
assessment, and understanding of the outliers in pKa,pred values are major problems
of interests in an accuracy examination. The goal of any pKa,pred outlier detection is
to find this true partition and, thus, separate good from outlying pKa values. A single
case approach to the detection of outliers can, however, fail because of masking or
swamping effects, in which outliers go undetected because of the presence of other,
usually adjacent, pK ′

as. Masking occurs when the data contain outliers which we fail
to detect; this can happen because some of the outliers are hidden by other outliers in
the data. Swamping occurs when we wrongly declare some of the non-outlying points
to be outliers [36]; this occurs because outliers tend to pull the regression equation
toward them, thereby making other points further from the fitted equation. Masking
is therefore a false negative decision, whereas swamping is a false positive. Unfortu-
nately, a bewilderingly large number of statistical tests, diagnostic graphs and residual
plots have been proposed for diagnosting influential points, namely outliers, and it is
time to select those approaches that are appropriate for pKa prediction. This paper
provides a critical survey of many outlier diagnostics, illustrated with data examples
to show how they successfully characterize the joint influence of a group of cases and
to yield a better understanding of joint influence.

2 Methods

2.1 Software and data used

Several software packages for pKa prediction were used and tested in this study. Most
of the work was carried out on PALLAS [10], MARVIN [15], Perrin method [29] and
SYBYL [14] software packages, based mostly on chemical structure, the reliability
of which reflects the accuracy of the underlying experimental data. In most software
the input is the chemical structure drawn in a graphical mode. For the accuracy exam-
ination of pKa,pred values we used Perrin’s examples of different chemical classes as
an external data set [29]. The model predicted pKa values were compared to Perrin’s
predictions, and the experimental measurements are listed in Table 1.

For the creation of regression diagnostic graphs and computation of the regression
based characteristics, the REGDIA algorithm was written in S-Plus [37], and the Lin-
ear Regression module of our ADSTAT package [38] was used. We have tried to show
some effective drawbacks of the statistical diagnostic tools in REGDIA which are,
in our experience, able to correctly pinpoint influential points. One should concen-
trate on that diagnostic tool which measures the impact on the quantity of primary
interest. The main difference between the use of regression diagnostics and classical
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Table 1 Perrin’s pKa values data set of 25 organic molecules: (a) i = 1–11 (pKa values of substituted
aliphatic acids and bases), (b) i = 12–18 (pKa values for phenols, aromatic carboxylic acids and aro-
matic amines), (c) i = 19–21 (pKa values of heteroatomic acids and bases), (d) i = 22–25 (pKa values of
heterocycles) [29]

i Name pKexp pKpred
(Pallas)

pKpred
(Marvin)

pKpred
(Perrin)

pKpred
(Sybyl)

1 Bis(2-Chloroethyl)(2-
Methoxyethyl)Amine

5.45 6.26 5.9 5.1 6.91

2 1-(4’-Hydroxycyclohexyl)-2-
(Isopropylamino)Ethanol

10.23 11.23 10.1 9.99 10.03

3 2-Aminocycloheptanol 9.25 9.77 9.98 9.67 9.84

4 N,N-Dimethyl-2-Butyn-1-
Amine

8.28 7.84 7.16 8.1 10.17

5 5-Chloro-3-Methyl-3-Aza-
pentanol

7.48 7.48 7.9 7.1 9.52

6 2-Acetylbutanedioic Acid 2.86 2.89 3.66 3.15 2.35

7 2-(Methylamino)Acetamide 8.31 4.93 8.81 8.43 8.11

8 2-(Dimethylamino)Ethyl
Acetate

8.35 8.72 8.42 8.26 8.6

9 2,3-Dihydroxy-2-Hydroxym-
ethylpropanoic Acid

3.29 3.28 3.32 3.01 3.85

10 1,8-Diamino-3,6-Dithiaoctane 9.47 9.54 9.41 9.06 9.26

11 4-Morpholino-2,2-Diphenyl-
pentanenitrile

6.05 7.07 6.96 6.38 7.45

12 Benzenehexol 9.0 8.32 9.50 8.31 9.28

13 Picric Acid 0.33 0.91 1.35 0.91 1.18

14 2,6-Dichloro-1,4-Benzenediol 7.3 6.82 6.99 6.82 7.6

15 4-Bromo-1,2-Benzenedicarb-
oxylic Acid

2.5 2.86 2.84 2.86 3.26

16 4-Hydroxy-3,5-Dimethoxy-
benzoic Acid

4.34 4.36 3.93 4.36 4.54

17 3-Iodo-4-Methylthioaniline 3.44 3.34 3.85 3.34 3.29

18 4-Bromo-3-Nitroaniline 1.8 1.82 1.68 1.82 1.78

19 3-Bromo-5-Methoxypyridine 2.6 2.3 2.49 2.3 3.19

20 4-Aminopyridazine 6.65 4.45 6.46 5.31 6.76

21 4-Amino-6-Chloropyrimidine 2.1 1.99 3.19 1.41 1.68

22 4-Nitrothiophen-2-Carboxylic
Acid

2.68 2.67 3.26 2.7 2.58

23 4-Bromopyrrol-2-Carboxylic
Acid

4.06 2.93 3.6 4.05 4.22

24 Furan-2,4-Dicarboxylic Acid 2.63 3.13 3.06 2.77 2.22

25 Pyrazole-3-Carboxylic Acid 3.74 3.98 3.18 3.98 3.77

REGDIA indicated outliers are in bold

statistical tests in REGDIA is that there is no necessity for an alternative hypothe-
sis, as all kinds of deviations from the ideal state are discovered. Seven diagnostic
plots (the Graph of predicted residuals [36], Williams graph [36,39], Pregibon graph
[36], Gray L–R graph [36,39–41], Scatter plot of classical residuals versus prediction
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[36,39–41], Index graph of jackknife residuals [36], and Index graph of Atkinson dis-
tance [41]) were selected as the most efficient to give reliable influential point detection
results and four being powerful enough to separate influential points into outliers and
high-leverages.

2.2 Regression diagnostics for examining the pKa accuracy in REGDIA

The examination of pKa data quality involves detection of the influential points in the
regression model proposed pKa,pred = β0 + β1pKa,exp, which cause many problems
in regression analysis by shifting the parameter estimates or increasing the variance
of the parameters [36]: (i) pKa,pred-outliers, which differ from the other points in their
value on the y-axis, where y stands in all of the following relations for pKa,pred; (ii)
high-leverage points, which differ from the other points in their value on the x-axis,
where x stands in all of the following relations for pKa,exp, or (iii) both outliers and
high-leverages, standing for a combination of both together. Analysis of various types
of residuals in the REGDIA program is useful for detecting inadequacies in the model,
or influential points in the data [36]:

(a) Ordinary residuals êi are defined by êi = yi − xiβ, where xi is the i th row of
matrix pK a,exp.

(b) Normalized residuals êN ,i = êi/s(ê) are often recommended for outlier detec-
tion.

(c) Standardized residuals êS,i = êi/(s(ê)
√

1 − ĥi i exhibit constant unit variance,
and their statistical properties are the same as those of ordinary residuals.

(d) Jackknife residuals êJ,i = êS,i

√
n−m−1

n−m−ê2
S,i

are residuals, where n stands for the

number of points and m for the number of parameters, here m − 2 and for which
a rule is valid: strongly influential points have squared jackknife residuals ê2

J,i
greater than 10. The descriptive statistics of residuals can be used for a numerical
goodness-of-fit evaluation in REGDIA program, cf. page 290 in Vol. 2 of [36]:

(1) The residual bias is the arithmetic mean of residuals E(ê) and should be equal
to zero.

(2) The square-root of the residuals variance s2(ê) = RSS(b)/(n − m) is used to
estimate of the residual standard deviation, s(ê), where RSS(b) is the residual
square-sum, should be of the same magnitude as the random error s(pKa,pred) as
it is valid that s(ê) ≈ s(pKa,pred).

(3) The determination coefficient D calculated from the correlation coefficient R and
multiplied by 100% is interpreted as the percentage of points which correspond
to proposed regression model.

(4) One of the most efficient criterion is the mean quadratic error of prediction

MEP =

n∑
i=1

(yi − xT
i b(i))

2

n
, (1)
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where b(i) is the estimate of regression parameters when all points except the
i th were used and xi (here pKa,exp,i) is the i th row of matrix pK a,exp. The sta-
tistic MEP uses a prediction ŷ P,i (here pKa,pred,i) from an estimate constructed
without including the i th point.

(5) The MEP (Eq. 1) can be used to express the predicted determination coefficient,

R̂2
P = 1 − n × MEP

n∑
i=1

y2
i − n × ȳ2

. (2)

(6) Another statistical characteristic is derived from information theory and entropy,
and is known as the Akaike information criterion,

AIC = n ln

(
RSS(b)

n

)
+ 2m, (3)

where n is the number of data points and m is the number of parameters, for a
straight line, m = 2. The best regression model is considered to be that in which
the minimal value of MEP and AIC and the highest value of the R2

P are reached.

Individual estimates b of parameters β are then tested for statistical significance
using the Student t-test. The Fisher-Snedecor F-test of significance of the regression
model proposed is based on the testing criterion

FR = R̂2(n − m)/
[
(1 − R̂2)(m − 1)

]
(4)

which has a Fisher-Snedecor distribution with (m − 1) and (n − m) degrees of free-
dom, where R2 is the determination coefficient. With the use of FR the null hypothesis
H0 : R2 = 0 may be tested and concerns a test of significance of all regression param-
eters β.

Examination of data and model quality can be considered directly from the scatter
plot of pKa,pred vs. pKa,exp. For the analysis of residuals a variety of plots have been
widely used in regression diagnostics of REGDIA program:

(a) the overall index plot of classical residuals gives an initial impression of the
residuals trend in chronological order. If the straight line model is correct, the
residuals e form a random pattern and should resemble values from a normal
distribution with zero mean. To examine the normality of a residual distribution,
the quantile-quantile (rankit) plot may be applied;

(b) the graph of predicted residuals indicates outliers as points located on the line
x = y, i.e. here pKa,pred = pKa,exp but far from its central pattern;

(c) the Williams graph has two boundary lines, the first for outliers, y = t0.95(n −
m−1) and the second for high-leverages, x = 2m/n. Note that t0.95(n−m−1) is
the 95% quantile of the Student distribution with (n−m −1) degrees of freedom;

(d) the Pregibon graph classifies two levels of influential points: strongly influen-
tial points are above the upper line, while medium influential points are located
between the two lines;
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(e) Gray’s L–R graph indicates outliers as points situated close above the corner of
the triangle;

(f) the scatter plot of classical residuals indicates only suspicious points which could
be proven as outliers using other diagnostics;

(g) the index graph of jackknife residuals indicates outliers according to an empiric
criterion which states: “strongly influential outliers reach a jackknife residual
greater than 3”;

(h) the scatter plot of the Atkinson distance d leads to numerically similar values as
the jackknife residuals, and therefore its interpretation is similar.

2.3 Graphs for the exploratory analysis of residuals in ADSTAT [36,38]

Residual analysis is based on examining goodness-of-fit via graphical and/or numeri-
cal diagnostics in order to check the data and model quality. A variety of exploratory
data analysis plots, such as bar plots, box-and-whisker plots, dot plots, midsum plots,
symmetry plots, kurtosis plots, differential quantile plots, quantile-box plots, frequency
polygon, histogram, quantile plots, quantile-quantile plots, rankit plots, scatter plots,
and autocorrelation plots, have been introduced in the ADSTAT program [36,38], and
widely used by authors such as Belsey, Kuh and Welsch [39], Cook and Weisberg
[40], Atkinson [41], Chatterjee and Hadi [42], Barnett and Lewis [43], Welsch [44],
Weisberg [45], Rousseeuw and Leroy [46]; others may be found Vol. 2 page 289 of
[36]. The following plots are quite important as they give an initial impression of the
pKa,pred residuals by using computer graphics [36,38]:

(a) The autocorrelation scatter plot, being an overall index plot of residuals checks
whether there is evidence of any trend in a pKa,pred series. The ideal plot shows
a horizontal band of points with constant vertical scatter from left to right and
indicates the suspicious points that could be influential.

(b) The quantile-box plot for symmetrical distributions has a sigmoid shape, while
for asymmetrical is convex or concave increasing. A symmetric unimodal distri-
bution contains individual boxes arranged symmetrically inside one another, and
the value of relative skewness is close to zero. Outliers are indicated by a sudden
increase of the quantile function outside the quartile F box.

(c) The dot diagram and jittered-dot diagram represent a univariate projection of a
quantile plot, and give a clear view of the local concentration of points.

(d) The notched box-and-whisker plot permits determination of an interval estimate
of the median, illustrates the spread and skewness of the sample data, shows the
symmetry and length of the tails of distribution and aids the identification of
outliers.

(e) The symmetry plot gives information about the symmetry of the distribution. For
a fully symmetrical distribution, it forms a horizontal line y = M (median).

(f) The quantile-quantile (rankit)plot has on the x-axis the quantile of the standard-
ized normal distribution u Pi for Pi = i/(n + 1), and on the y-axis, has the
ordered residuals e(i). Data points lying along a straight line indicate distribu-
tions of similar shape. This plot enables classification of a sample distribution
according to its skewness, kurtosis and tail length. A convex or concave shape
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indicates a skewed sample distribution. A sigmoidal shape indicates that the tail
lengths of the sample distribution differ from those of a normal one.

(g) The kernel estimation of probability density plot and the histogram detect an
actual sample distribution.

3 Experimental

3.1 Procedure of accuracy examination

The procedure for the examination of influential points in the data, and the construc-
tion of a linear regression model with the use of REGDIA and ADSTAT programs,
consists of the following steps:

Step 1 Graphs for the exploratory indication of outliers. This step carries out the
goodness-of-fit test by a statistical examination of classical residuals in ADSTAT
[36,38] for the identification of suspicious points (S) or outliers (O): the overall index
plot of residuals trend, the quantile plot, the dot diagram and jittered-dot diagram, the
notched box-and-whisker plot, the symmetry plot, the quantile-quantile rankit plot,
the histogram and the Kernel estimation of the probability density function also prove
a symmetry of sample distribution. Sample data lead to descriptive statistics, as they
are the residual mean and the standard deviation of residuals. The Student t-test tests a
null hypothesis of zero mean of the residuals bias, H0 : E(ê) = 0 vs. HA : E(ê) �= 0.

Step 2 Preliminary indication of suspicious influential points. This step discovers
suspicious points only. The index graph of classical residuals and the rankit plot also
indicate outliers. Beside descriptive statistics E(ê) and s the Student t-test for a null
hypothesis a null hypothesis H0 : E(ê) = 0 vs. HA : E(ê) �= 0 and α = 0.05 is also
examined.

Step 3 Regression diagnostics to detect suspicious points or outliers in REGDIA
program: The least squares straight-line fitting of the regression model proposed
pKa,pred = β0 + β1pKa,exp, with a 95% confidence interval, and regression diag-
nostics for the identification of outlying pKa,pred values detect suspicious points (S)
or outliers (O) using the graph of predicted residuals indicates, the Williams graph,
the Pregibon graph, the L–R graph indicates, the scatter plot of classical residuals vs
prediction, the index graph of jackknife residuals and the index plot of the Atkinson
distance.

Step 4 Interpretation of outliers. The statistical significance of both parameters β0
and β1 of the straight-line regression model pKa,pred = β0(s0, A or R) + β1(s1, A
or R) pKa,exp is tested in REGDIA program using the Student t-test, where A or R
means that the tested null hypothesis H0 : β0 = 0 vs. HA : β0 �= 0 and H0 : β1 = 1
vs. HA : β1 �= 1 was either Accepted or Rejected. The standard deviations s0 and s1
of the actual parameters β0 and β1 are estimated. A statistical test of total regression
is performed using a Fisher-Snedecor F-test and the calculated significance level P
is enumerated. Outliers are indicated with the preferred Williams graph. The corre-
lation coefficient R, the determination coefficient R2 giving the regression rabat D

123



J Math Chem (2010) 47:891–909 899

are computed. The mean quadratic error of prediction MEP, the Akaike information
criterion AIC and the predictive coefficient of determination R2

P as a percentage are
calculated to examine the quality of the model. According to the test for the fulfilment
of the conditions for the least-squares method, and the results of regression diagnos-
tics, a more accurate regression model without outliers is constructed and statistical
characteristics examined. Outliers should be elucidated.

3.2 Supporting information available

The complete computational procedures of the REGDIA program, input data spec-
imens and corresponding output in numerical and graphical form are available free
of charge via the internet at http://meloun.upce.cz in the blocks DATA and ALGO-
RITHMS.

4 Results and discussion

The results of the pKa prediction with the use of the four algorithms PALLAS [10],
MARVIN [15], PERRIN [29] and SYBYL [13,14] are compared, with the predicted
values of the dissociation constants pKa,pred are plotted against the experimental val-
ues pKa,exp for the compounds of Perrin’s data set from Table 1. Even given that
PALLAS’s performance might be somewhat less accurate for druglike compounds,
there is overall a good agreement between the predicted pKa,pred and experimental
values pKa,exp.

4.1 Evaluating diagnostics in outlier detection

Regression analysis and the discovery of influential points in the pKa,pred values of
data have been investigated extensively using the REGDIA program. Perrin’s liter-
ature data in Table 1 represent a useful medium for the comparison of results and
demonstrating the efficiency of diagnostic tools for outliers detection. The majority
of multiple outliers are better indicated by diagnostic plots than by statistical tests of
the diagnostic values in the table. These data have been much analyzed as a test for
outlier methods. The PALLAS-predicted pKa,pred vs experimentally observed pKa,exp
values for the examined set for bases and acids are plotted in Fig. 1a. The pKa,pred
values are distributed evenly around the diagonal, implying consistent error behaviour
in the residual values. The optimal slope β1 and intercept β0 of the linear regression
model pKa,pred = β0 + β1pKa,exp for β0 = 0.17(0.41) and β1 = 0.94(0.07) can
be understood as 0 and 1, respectively, where the standard deviation of parameters
appears in brackets.

Another way to evaluate a quality of the regression model proposed with the use
of the PALLAS program is to examine its goodness-of-fit. Most of the acids and base
in the examined sample are predicted with an accuracy of better than one log of their
measurement. Detecting influential points, two figures, each of 8 diagnostics, were
analyzed: (i) diagnostic plots based on exploratory data analysis (Fig. 2a–h), and (ii)
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Fig. 1 Diagnostics graphs for the identification of outlying pKa,pred values detecting points which are
suspicious values (S) or outliers (O) for the data of Table 1 with the PALLAS program: a The least squares
straight-line fitting of the regression model pKa,pred = 0.17(0.41) + 0.94(0.07) pKa,exp, with the 95%
confidence interval and all the pKa data indicates S: 1, 2, 7, 11, 20, 23. b The graph of predicted residuals
indicates O: 1, 2, 3, 7, 11, 20, 23, c The Williams graph indicates O: 2, 7, 20, d The Pregibon graph indicates
influential points (outliers and leverages): 2, 7, 20, e The L–R graph indicates O: 2, 7, 20, f The scatter plot
of classical residuals vs prediction indicates S: 2, 7, 11, 20, 23, g The index graph of jackknife residuals
indicates S: 2, 11, 20, 23 and O: 7, h The index plot of the Atkinson distance indicates S: 20 and O: 2, 7

diagnostic graphs based on the residuals and hat matrix elements (Fig. 1b–f) or vector
and scalar influence measures (Fig. 1h) show that the five diagnostic plots (Fig. 1b–f, h)
and the Q–Q graph of the jackknife residuals (Fig. 1g) indicate outlying points which
obviously differ from the others. The statistical test criteria in the diagnostic plots of
Fig. 1 were used to separate influential points into outliers and high-leverages.

The overall index plot of residuals in Fig. 2a indicates no trend in the residuals, as
it shows a horizontal band of points with a constant vertical scatter from left to right,
and found suspicious points 2, 7, 11, 12, 20 and 23. The quantile-box plot (Fig. 2b)
proves the asymmetry of the sample distribution and detects suspicious points 2, 7,
11 and 20, with a sudden increase of the quantile function outside the quartile F box.
The dot and jittered-dot diagram (Fig. 2c) indicates suspicious points 7, 20 and 23.
The notched box-and-whisker plot (Fig. 2d) illustrates the spread and skewness of the
pKa data, shows the symmetry and length of the tails of the distribution, and aids
in the identification of outliers 7 and 20 while the symmetry plot (Fig. 2e) and the
quantile-quantile or rankit plot (Fig. 2f) found suspiesious points 2, 7, 11 and 20. Both
the histogram (Fig. 2g) and the Kernel estimation of the probability density function
(Fig. 2h) prove asymmetry of the sample distribution. To test influential points which
were still only suspicious, five diagnostic graphs for outlier detection were applied:
the graph of predicted residuals (Fig. 1b) detects outliers 1, 2, 3, 7, 11, 20 and 23 while
the most efficient tool, the Williams graph (Fig. 1c) indicates outliers 2, 7 and 20. The
Pregibon graph (Fig. 1d) exhibits influential points (outliers and leverages together) 2,
7 and 20. The L–R graph (Fig. 1e) finds outliers 2, 7 and 20. The scatter plot of clas-
sical residuals vs prediction pKa,pred (Fig. 1f) indicates suspicious points 2, 7, 11, 20
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Fig. 2 Exploratory data analysis graphs carrying out a statistical examination of classical residuals for
the identification of outlying pKa,pred values and detecting points which are suspicious values (S) or out-
liers (O) for the data of Table 1 with the PALLAS program. The data leads to the descriptive statistics:
n = 25, α = 0.05, the point estimate of the residual bias E(ê) = 0.13, and for an interval estimate the
lower limit L L = −0.26 and the upper limity LU = 0.53, the standard deviation s = 0.96. A Student
t-test examines a null hypothesis H0 : E(ê) = 0 vs. HA : E(ê) �= 0 and leads to the statistical criterion
texp = 0.69 < tcrit = 2.06 with a calculated significance level of P = 0.23 meaning that H0 is accepted:
a The overall index plot of the residuals trend indicates no trend and S: 2, 7, 11, 12, 20, 23. b The quan-
tile-box plot indicates S: 2, 7, 11, 20. c The dot and jittered-dot diagram indicates S: 7, 20, 23. d The
notched box-and-whisker plot indicates O: 7, 20. e The symmetry plot, f The quantile-quantile (rankit) plot
indicates S: 2, 7, 11, 20 g The histogram and h the Kernel estimation of probability density function prove
an asymmetry of sample distribution

and 23 only. The index graph of jackknife residuals (Fig. 1g) also indicates suspicious
points 2, 11, 20 and 23 and one outlier, 7, being greater than 3. The index plot of the
Atkinson distance (Fig. 1h) shows one suspicious point, 20, and two outliers, 2 and 7
being outside the testing line in this graph. It may be concluded that one of the best
diagnostic graphs for outlier detection is to be the Williams graph as it gives always
clear detection of influential points and separate them on outliers and leverages.

4.2 Accuracy of pKa prediction calculated with four algorithms

Four algorithms for pKa prediction PALLAS [10], MARVIN [15], PERRIN [29] and
SYBYL [13,14] were applied and their performance with effectiveness in the statis-
tical accuracy test were compared extensively. As expected, the calculated values of
pKa,pred agree well with those of the experimental values pKa,exp.

Fitted residual evaluation can be quite an efficient tool in regression model build-
ing and testing. The correlations for all of the calculated values of pKa from the four
algorithms used and the experimental values using original data with outliers are as in
Table 2. Figure 3 depicts a preliminary analysis of goodness-of-fit while Fig. 4 shows
the Williams graph for identification and removal of outliers. In addition to the graph-
ical analysis, the regression diagnostics of the fitness test prove the quality of pKa

123



902 J Math Chem (2010) 47:891–909

Fig. 3 Comparison of four programs for the detection of outlying pKa,pred values using the index graph
of classical residuals (a, b, c, d in the upper part of figure) and the rankit Q–Q plot (e, f, g, h) for the data
of Table 1. A Student t-test tests a null hypothesis H0 : E(ê) = 0 vs. HA : E(ê) �= 0 and for n = 25
and α = 0.05 the descriptive statistics are calculated: a PALLAS: E(ê) = 0.13, s = 0.96, test leading to
texp = 0.69 < tcrit = 2.06, P = 0.23(H0 is accepted), suspicious pKa,pred values indicated 1, 2, 7, 11, 20,
23. b MARVIN: E(ê) = −0.19, s = 0.54, test leading to texp = | − 1.77| < tcrit = 2.06, P = 0.05 (H0
is accepted), suspicious pKa,pred values indicated: 4, 11. c Perrin: E(ê) = 0.12, s = 0.42, test leading to
texp = 1.42 < tcrit = 2.06, P = 0.08 (H0 is accepted), suspicious pKa,pred values indicated: 3, 11, 13, 20,
21. d SYBYL: E(ê) = −0.37, s = 0.70, test leading to texp = | − 2.64| > tcrit = 2.06, P = 0.007 (H0
is rejected), suspicious pKa,pred values indicated: 1, 2, 4, 5, 6, 10, 11

prediction. The highest values R2, R2
P, the lowest value of MEP and s and the more

negative value of AIC in Fig. 5 and Table 2 are exhibited with the Perrin’s algorithm of
pKa prediction, and this algorithm has the best predictive power and most accurate.

Regression model: The predicted versus the experimentally observed pKa values for
examined data set are plotted in Fig. 4a,b,c,d. The data points are distributed evenly
around the diagonal in the figures, implying the consistent error behavior of the residual
value. The slope and intercept of the linear regression are optimal; the slope estimates
for the four algorithms used areβ1(s1) = 0.94(0.07, A), 0.95(0.04, R), 0.95(0.03, A),

1.04(0.05, A) where A or R means that the tested null hypothesis H0 : β0 = 0 vs. HA :
β0 �= 0 and H0 : β1 = 1 vs. HA : β1 �= 1 was Accepted or Rejected with the standard
deviation of parameters estimates in brackets. Removing the outliers from the data set
these estimates reach values 0.98(0.04, A), 0.97(0.03, R), 0.93(0.02, R), 1.00(0.04, A).
The intercept estimates are β0(s0) = 0.17(0.41, A), 0.43(0.23, R), 0.12(0.17, A),

0.15(0.30, A) and after removing outliers from data set 0.14(0.22, A), 0.39(0.21,
A), 0.28(0.11, R), 0.24(0.23, A). Here A or R means the tested null hypothesis
H0 : β0 = 0 vs. HA : β0 �= 0 and H0 : β1 = 1 vs. HA : β1 �= 1 was Accepted
or Rejected. The slope is equal to one for 3 algorithms, excepting MARVIN, and
the intercept is equal to zero for 3 algorithms, again excepting MARVIN. The Fisher-
Snedecor F-test of overall regression in Fig. 5 leads to a calculated significance level of
P = 9.0E-13, 2.6E-18, 4.9E-21, 1.3E-16, and after removing the outliers from the data
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Fig. 4 Accuracy examination and comparison of four programs for the predictive ability of the pro-
posed regression model pKa,pred = β0(s0, A or R) + β1(s1, A or R)pKa,exp in a scatter diagram of
the original data of Table 1 (upper part of figure denoted a, b, c, d), outlier detection with a Williams
graph (middle part of figure denoted e, f, g, h) and in the scatter diagram after removing outliers from
the data (lower part of figure ch, i, j, k) from the data of Table 1 with n = 25 and α = 0.05 where
A or R means that the tested null hypothesis H0 : β0 = 0 vs. HA : β0 �= 0 and H0 : β1 = 1 vs.
HA : β1 �= 1 was Accepted or Rejected. In brackets the standard deviation of an actual parameter is
estimated. Data with outliers: (a) PALLAS: β0(s0) = 0.17(0.41, A), β1(s1) = 0.94(0.07, A), R2 =
89.5%, s = 0.96, F = 195.7 > 4.12, P = 9.0E − 13, MEP = 1.01, AIC = 0.02, R2

P = 76.6%, indicated

outliers: 2, 7, 20. (b) MARVIN: β0(s0) = 0.43(0.23, R), β1(s1) = 0.95(0.04, R), R2 = 96.5%, s =
0.54, F = 638.4 > 4.12, P = 2.6E−18, MEP = 0.32, AIC = −28.94, R2

P = 91.97%, indicated outliers:

4. (c) Perrin: β0(s0) = 0.12(0.17, A), β1(s1) = 0.95(0.03, A), R2 = 98.0%, s = 0.42, F = 1116.2 >

4.12, P = 4.9E − 21, MEP = 0.18, AIC = −42.9, R2
P = 95.3%, indicated outliers: 3, 20, 21. (d) SYB-

YL: β0(s0) = 0.15(0.30, A), β1(s1) = 1.04(0.05, A), R2 = 95.1%, s = 0.70, F = 446.7 > 4.12, P =
1.3E − 16, MEP = 0.54, AIC = −15.60, R2

P = 88.8%, indicated outliers: 4, 5. Data after removing

outliers from data: (a) PALLAS: β0(s0) = 0.14(0.22, A), β1(s1) = 0.98(0.04, A), R2 = 96.9%, s =
0.49, F = 631.6 > 4.35, P = 1.3E − 16, MEP = 0.27, AIC = −28.4, R2

P = 92.8%, (b) MARVIN:

β0(s0) = 0.39(0.21, A), β1(s1) = 0.97(0.03, R), R2 = 97.3%, s = 0.48, F = 782.2 > 4.30, P =
1.1E − 18, MEP = 0.26, AIC =-32.8, R2

P = 93.6%, (c) Perrin: β0(s0) = 0.28(0.11, R), β1(s1) =
0.93(0.02, R), R2 = 99.1%, s = 0.31, F = 2323.5 > 4.35, P = 3.6E − 22, MEP = 0.07, AIC =
−57.8, R2

P = 97.9%, (d) SYBYL: β0(s0) = 0.24(0.23, A), β1(s1) = 1.00(0.04, A), R2 = 96.8%, s =
0.53, F = 634.5 > 4.32, P = 3.6E − 17, MEP = 0.32, AIC = −26.0, R2

P = 92.6%

set of P = 1.3E-16, 1.1E-18, 3.6E-22, 3.6E-17, meaning that all four algorithms pro-
posed a significant regression model. The highest value of F-test is exhibited by the
PERRIN algorithm.

Correlation: The quality of the regression models yielded by the four algorithms was
measured using the two statistical characteristics of correlation in Fig. 5, i.e. R2 =
89.5, 96.5, 98.0, and 95.1% and after removing the outliers from the data set R2 = 96.9,
97.3, 99.1, and 96.8% and R2

P = 76.6, 92.0, 95.3, and 88.8% and after removing the
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Fig. 5 Resolution capability of the six regression diagnostic criteria Fexp, R2, R2
P, MEP, AIC and s for

an accuracy examination of pKa prediction when the four algorithms PALLAS, MARVIN, PERRIN and
SYBYL are tested and compared. Here orig means the original data set and out means the data set without
outliers

outliers from the data set R2
P = 92.8, 93.6, 97.9, and 92.6%. R2 is prominently high

for all four algorithms and indicates an algorithm’s ability to interpolate within the
range of pKa values in the examined data set. The highest value is exhibited by the
PERRIN algorithm.

Prediction ability criteria: The most efficient criteria of a goodness-of-fit test to also
express a predictive ability are the mean error of prediction MEP and the Akaike
information criterion AIC in Fig. 5. Calculated MEP lead to values of 1.01, 0.32, 0.18,
0.54, and after removing the outliers from the data set MEP reaches the lower val-
ues of 0.27, 0.26, 0.07, 0.32. The Akaike information criterion AIC yields values of
0.02, −28.94, −42.9, −15.6, and after removing the outliers from the data set AIC
reaches more negative values of −28.4, −32.8, −57.8, −26.0. This shows that both
MEP and AIC classify the predictive ability of the 4 algorithms well. The lowest value
of MEP = 0.18 is attained for the Perrin method, while the most negative value of
AIC = −42.9 is also attained for the Perrin method. This criteria used efficiently
classify predictive ability of the regression model, and classify the four algorithms
compared from best to worst. The regression models are predictive enough, i.e. are
also able to extrapolate beyond the training set.

Goodness-of-fit test: The best way to evaluate the four regression models is to examine
the fitted residuals. If the proposed model represents the data adequately, the resid-
uals should form a random pattern having a normal distribution N(0, s2) with the
residual mean equal to zero, E(ê) = 0. A Student t-test examines the null hypothesis
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H0 : E(ê) = 0 vs. HA : E(ê) �= 0 and gives the criteria value for the four algorithms in
the form of the calculated significance levels P = 0.23, 0.05, 0.08, 0.007. Three algo-
rithms give a residual bias equal to zero, the exception being the SYBYL. The estimated
standard deviation of regression straight line in Fig. 5 is s = 0.96, 0.54, 0.42, 0.70 log
units pKa, and after removing the outliers from the data set s = 0.49, 0.48, 0.31, 0.53
log units pKa, the lowest value being attained for the Perrin method.

Outlier detection: The detection, assessment, and understanding of outliers in pKa,pred
values are major areas of interest in an accuracy examination. If the data contains a
single outlier pKa,pred, the problem of identifying such a pKa,pred value is relatively
simple. If the pKa,pred data contains more than one outlier (which is likely to be the
case in most data), the problem of identifying such pKa,pred values becomes more diffi-
cult, due to the masking and swamping effects [36]. Masking occurs, when an outlying
pKa,pred goes undetected because of the presence of another, usually adjacent, pKa,pred
subset. Swamping occurs when “good” pKa,pred values are incorrectly identified as
outliers because of the presence of another, usually remote, subset of pKa,pred. Sta-
tistical tests are needed to decide how to use the real data, in order approximately to
satisfy the assumptions of the hypothesis tested. In the PALLAS straight line model
three outliers, 2, 7 and 20 were detected. In the MARVIN straight line model only
one outlier, 4, was detected. In Perrin’s straight line three outliers, 3, 20 and 21, were
detected, while in the SYBYL straight line model only two outliers, 4 and 5, were
detected.

Outlier interpretation and removal: Poorest molecular pKa predictions are indi-
cated as outliers. Outliers are molecules which belong to the most poorly characterized
class considered, so it is no great surprise that they are also the most poorly predicted.
Outliers should therefore be elucidated and removed from the data: here with the
use of the Williams plot three outliers, i.e. outlier no. 2 (1-4’-hydroxycyclohexyl-2-
isopropylaminoethanol), outlier no. 7, (2-methylaminoacetamide) and outlier no. 20,
(4-aminopyridazine) were detected in the PALLAS regression model (Fig. 4e), one
outlier no. 4 (N,N-dimethyl-2-butyn-1-amine) in the MARVIN model (Fig. 4f), three
outliers, i.e. outlier no. 3, (2-aminocycloheptanol), outlier no. 20, (4-aminopyridazine)
and outlier no. 21, (4-amino-6-chloropyrimidine) in Perrin’s model (Fig. 4g) and two
outliers, i.e. outlier no. 4 N,N-dimethyl-2-butyn-1-amine, outlier no. 5 (5-chloro-3-
methyl-3-azapentanol) in the SYBYL model (Fig. 4h). Removing the outlying values
of pKa poorly predicted molecules, all the remaining data points were statistically
significant (Fig. 4ch,i,j,k). Outliers frequently turned out to be either misassignment
of pKa values or suspicious molecular structure. The fragment based approach is inad-
equate when fragments present in a molecule under study are absent in the database.
Such pKa prediction only depends on the compounds very similar to those available
in the training set. Suitable corrections are made where possible, but in some cases
the corresponding data had to be omitted from the training set. In other cases, outliers
served to point up a need to split one class of molecules into two or more subclasses
based on the substructure in which the acidic or more often basic center is embedded.
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5 Conclusions

Most poorly predicted molecular pKa are indicated as outliers. Seven selected diagnos-
tic plots (the Graph of predicted residuals, Williams graph, Pregibon graph, Gray L–R
graph, Scatter plot of classical residuals versus prediction, Index graph of jackknife
residuals, Index graph of Atkinson distance) were chosen as the best and most efficient
to give reliable detection of outlying pKa values. The proposed accuracy test of the
REGDIA program can also be extended for other predicted values, as log P , log D,
aqueous solubility, and some physicochemical properties.

Novelty: Many structure-property algorithms have been used to predict pKa but mostly
without a rigorous test of pKa accuracy. The regression diagnostics algorithm REGDIA
in S-Plus is introduced here to test and to compare the accuracy of pKa predicted with
four programs, PALLAS, MARVIN, PERRIN and SYBYL. Indicated outliers in pKa
relate to molecules which are poorly characterized by the considered pKa algorithm.
Of the seven most efficient diagnostic plots the Williams graph was selected to give
the most reliable detection of outliers. The six statistical characteristics, Fexp, R2, R2

P,
MEP, AIC, and s in pKa units, successfully examine the pKa data. The proposed accu-
racy test can also be applied to test any other predicted values, such as log P , log D,
aqueous solubility or some physicochemical properties.
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